69 research outputs found

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi

    Concentration inequalities for sampling without replacement

    Get PDF
    Concentration inequalities quantify the deviation of a random variable from a fixed value. In spite of numerous applications, such as opinion surveys or ecological counting procedures, few concentration results are known for the setting of sampling without replacement from a finite population. Until now, the best general concentration inequality has been a Hoeffding inequality due to Serfling [Ann. Statist. 2 (1974) 39-48]. In this paper, we first improve on the fundamental result of Serfling [Ann. Statist. 2 (1974) 39-48], and further extend it to obtain a Bernstein concentration bound for sampling without replacement. We then derive an empirical version of our bound that does not require the variance to be known to the user.Comment: Published at http://dx.doi.org/10.3150/14-BEJ605 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Inference for determinantal point processes without spectral knowledge

    Full text link
    Determinantal point processes (DPPs) are point process models that naturally encode diversity between the points of a given realization, through a positive definite kernel KK. DPPs possess desirable properties, such as exact sampling or analyticity of the moments, but learning the parameters of kernel KK through likelihood-based inference is not straightforward. First, the kernel that appears in the likelihood is not KK, but another kernel LL related to KK through an often intractable spectral decomposition. This issue is typically bypassed in machine learning by directly parametrizing the kernel LL, at the price of some interpretability of the model parameters. We follow this approach here. Second, the likelihood has an intractable normalizing constant, which takes the form of a large determinant in the case of a DPP over a finite set of objects, and the form of a Fredholm determinant in the case of a DPP over a continuous domain. Our main contribution is to derive bounds on the likelihood of a DPP, both for finite and continuous domains. Unlike previous work, our bounds are cheap to evaluate since they do not rely on approximating the spectrum of a large matrix or an operator. Through usual arguments, these bounds thus yield cheap variational inference and moderately expensive exact Markov chain Monte Carlo inference methods for DPPs

    Learning from DPPs via Sampling: Beyond HKPV and symmetry

    Full text link
    Determinantal point processes (DPPs) have become a significant tool for recommendation systems, feature selection, or summary extraction, harnessing the intrinsic ability of these probabilistic models to facilitate sample diversity. The ability to sample from DPPs is paramount to the empirical investigation of these models. Most exact samplers are variants of a spectral meta-algorithm due to Hough, Krishnapur, Peres and Vir\'ag (henceforth HKPV), which is in general time and resource intensive. For DPPs with symmetric kernels, scalable HKPV samplers have been proposed that either first downsample the ground set of items, or force the kernel to be low-rank, using e.g. Nystr\"om-type decompositions. In the present work, we contribute a radically different approach than HKPV. Exploiting the fact that many statistical and learning objectives can be effectively accomplished by only sampling certain key observables of a DPP (so-called linear statistics), we invoke an expression for the Laplace transform of such an observable as a single determinant, which holds in complete generality. Combining traditional low-rank approximation techniques with Laplace inversion algorithms from numerical analysis, we show how to directly approximate the distribution function of a linear statistic of a DPP. This distribution function can then be used in hypothesis testing or to actually sample the linear statistic, as per requirement. Our approach is scalable and applies to very general DPPs, beyond traditional symmetric kernels

    Adaptive MCMC with online relabeling

    Full text link
    When targeting a distribution that is artificially invariant under some permutations, Markov chain Monte Carlo (MCMC) algorithms face the label-switching problem, rendering marginal inference particularly cumbersome. Such a situation arises, for example, in the Bayesian analysis of finite mixture models. Adaptive MCMC algorithms such as adaptive Metropolis (AM), which self-calibrates its proposal distribution using an online estimate of the covariance matrix of the target, are no exception. To address the label-switching issue, relabeling algorithms associate a permutation to each MCMC sample, trying to obtain reasonable marginals. In the case of adaptive Metropolis (Bernoulli 7 (2001) 223-242), an online relabeling strategy is required. This paper is devoted to the AMOR algorithm, a provably consistent variant of AM that can cope with the label-switching problem. The idea is to nest relabeling steps within the MCMC algorithm based on the estimation of a single covariance matrix that is used both for adapting the covariance of the proposal distribution in the Metropolis algorithm step and for online relabeling. We compare the behavior of AMOR to similar relabeling methods. In the case of compactly supported target distributions, we prove a strong law of large numbers for AMOR and its ergodicity. These are the first results on the consistency of an online relabeling algorithm to our knowledge. The proof underlines latent relations between relabeling and vector quantization.Comment: Published at http://dx.doi.org/10.3150/13-BEJ578 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore